J Mol Evol. 2006 Dec 9; [Epub ahead of print]
Toxoplasma gondii Expresses Two Mitogen-Activated Protein Kinase Genes That Represent Distinct Protozoan Subfamilies.
Lacey MR, Brumlik MJ, Yenni RE, Burow ME, Curiel TJ.
Department of Mathematics, Tulane University, 6823 St. Charles Avenue, New Orleans, LA, 70118, USA.
All eukaryotes express mitogen-activated protein kinases (MAPKs) that govern diverse cellular processes including proliferation, differentiation, and survival. Even though these proteins are highly conserved throughout nature, MAPKs from closely related species often possess distinct signature sequences, making them well suited as drug discovery targets. Based on the central amino acid in the TXY dual phosphorylation loop, mammalian MAPKs are classified as extracellular signal-regulated kinases (ERKs), c-Jun amino-terminal kinases (JNKs), or p38 stress-response MAPKs. The presence of MAPKs in nonmetazoan eukaryotes suggests significant evolutionary conservation of these important signalling pathways. We recently cloned a novel stress-response MAPK gene (tgMAPK1) from Toxoplasma gondii, an obligate intracellular human parasite that can cause life-threatening infections in immunocompromised patients, and we now present data on a second T. gondii MAPK gene (tgMAPK2) that we cloned. We show that tgMAPK1 and tgMAPK2 are members of two distinct and previously unknown protozoan MAPK subfamilies that we have named pzMAPKl/pzMAPK3 and pzMAPK2. Our phylogenetic analysis of a collection of protozoan and metazoan MAPK genes in relation to ERK8-like genes demonstrates that an ERK8-like family, which includes the pzMAPK2 subfamily, is represented across a large variety of eukaryotic kingdoms and is evolutionarily very distant from other MAPK families.
No comments:
Post a Comment