Parasitol Res. 2017 Mar 30. doi: 10.1007/s00436-017-5434-x. [Epub ahead of print]
Gong Z1,2,
Yin H1,2,
Ma X1,2,
Liu B1,2,
Han Z1,2,
Gou L1,2,
Cai J3,4.
Abstract
To date, little is known about cytosine methylation in the genomic DNA of apicomplexan parasites, although it has been confirmed that this important epigenetic modification exists in many lower eukaryotes, plants, and animals. In the present study, ELISA-based detection demonstrated that low levels of 5-methylcytosine (5-mC) are present in Eimeria spp., Toxoplasma gondii, Cryptosporidium spp., and Neospora caninum. The proportions of 5-mC in genomic DNA were 0.18 ± 0.02% in E tenella sporulated oocysts, 0.19 ± 0.01% in E. tenella second-generation merozoites, 0.22 ± 0.04% in T. gondii tachyzoites, 0.28 ± 0.03% in N. caninum tachyzoites, and 0.06 ± 0.01, 0.11 ± 0.01, and 0.09 ± 0.01% in C. andersoni, C. baileyi, and C. parvum sporulated oocysts, respectively. In addition, we found that the percentages of 5-mC in E. tenella varied considerably at different life stages, with sporozoites having the highest percentage of 5-mC (0.78 ± 0.10%). Similar stage differences in 5-mC were also found in E. maxima, E. necatrix, and E. acervulina, the levels of 5-mC in their sporozoites being 4.3-, 1.8-, 2.5-, and 2.0-fold higher than that of sporulated oocysts, respectively (p < 0.01). Furthermore, a total DNA methyltransferase-like activity was detected in whole cell extracts prepared from E. tenella sporozoites. In conclusion, genomic DNA methylation is present in these apicomplexan parasites and may play a role in the stage conversion of Eimeria.
KEYWORDS:
5-Methylcytosine; Apicomplexan parasites; DNA methyltransferase-like activity; Eimeria spp.; Genomic DNA
No comments:
Post a Comment