Abstract
PURPOSE OF REVIEW:
Autophagy plays a crucial role in intracellular defense against various pathogens. Xenophagy is a form of selective autophagy that targets intracellular pathogens for degradation. In addition, several related, yet distinct, intracellular defense responses depend on autophagy-related genes. This review gives an overview of these processes, pathogen strategies to subvert them, and their crosstalk with various cell death programs.
RECENT FINDINGS:
The recruitment of autophagy-related proteins plays a key role in multiple intracellular defense programs, specifically xenophagy, microtubule-associated protein 1 light chain 3 alpha (LC3)-associated phagocytosis, and the interferon gamma-mediated elimination of pathogens, such as Toxoplasma gondii and murine norovirus. Recent progress has revealed methods employed by pathogens to resist these intracellular defense mechanisms and/or persist in spite of them. The intracellular pathogen load can tip the balance between cell survival and cell death. Further, it was recently observed that LC3-associated phagocytosis is indispensable for the efficient clearance of dying cells.
SUMMARY:
Autophagy-dependent and autophagy-related gene-dependent pathways are essential in intracellular defense against a broad range of pathogens.
- PMID:
- 25394238
- [PubMed - as supplied by publisher]
No comments:
Post a Comment