Parasitology. 2014 Jun 13:1-11. [Epub ahead of print]
The gatekeeper residue and beyond: homologous calcium-dependent protein kinases as drug development targets for veterinarian Apicomplexa parasites
Keyloun KR1, Reid MC1, Choi R1, Song Y2, Fox AM1, Hillesland HK1, Zhang Z2, Vidadala R3, Merritt EA2, Lau AO4, Maly DJ3, Fan E2, Barrett LK1, VAN Voorhis WC1, Ojo KK1.
Abstract
SUMMARY Specific roles of individual CDPKs vary, but in general they mediate essential biological functions necessary for parasite survival. A comparative analysis of the structure-activity relationships (SAR) of Neospora caninum, Eimeria tenella and Babesia bovis calcium-dependent protein kinases (CDPKs) together with those of Plasmodium falciparum, Cryptosporidium parvum and Toxoplasma gondii was performed by screening against 333 bumped kinase inhibitors (BKIs). Structural modelling and experimental data revealed that residues other than the gatekeeper influence compound-protein interactions resulting in distinct sensitivity profiles. We subsequently defined potential amino-acid structural influences within the ATP-binding cavity for each orthologue necessary for consideration in the development of broad-spectrum apicomplexan CDPK inhibitors. Although the BKI library was developed for specific inhibition of glycine gatekeeper CDPKs combined with low inhibition of threonine gatekeeper human SRC kinase, some library compounds exhibit activity against serine- or threonine-containing CDPKs. Divergent BKI sensitivity of CDPK homologues could be explained on the basis of differences in the size and orientation of the hydrophobic pocket and specific variation at other amino-acid positions within the ATP-binding cavity. In particular, BbCDPK4 and PfCDPK1 are sensitive to a larger fraction of compounds than EtCDPK1 despite the presence of a threonine gatekeeper in all three CDPKs.
- PMID:
- 24927073
- [PubMed - as supplied by publisher]
Keyloun KR1, Reid MC1, Choi R1, Song Y2, Fox AM1, Hillesland HK1, Zhang Z2, Vidadala R3, Merritt EA2, Lau AO4, Maly DJ3, Fan E2, Barrett LK1, VAN Voorhis WC1, Ojo KK1.
Abstract
SUMMARY Specific roles of individual CDPKs vary, but in general they mediate essential biological functions necessary for parasite survival. A comparative analysis of the structure-activity relationships (SAR) of Neospora caninum, Eimeria tenella and Babesia bovis calcium-dependent protein kinases (CDPKs) together with those of Plasmodium falciparum, Cryptosporidium parvum and Toxoplasma gondii was performed by screening against 333 bumped kinase inhibitors (BKIs). Structural modelling and experimental data revealed that residues other than the gatekeeper influence compound-protein interactions resulting in distinct sensitivity profiles. We subsequently defined potential amino-acid structural influences within the ATP-binding cavity for each orthologue necessary for consideration in the development of broad-spectrum apicomplexan CDPK inhibitors. Although the BKI library was developed for specific inhibition of glycine gatekeeper CDPKs combined with low inhibition of threonine gatekeeper human SRC kinase, some library compounds exhibit activity against serine- or threonine-containing CDPKs. Divergent BKI sensitivity of CDPK homologues could be explained on the basis of differences in the size and orientation of the hydrophobic pocket and specific variation at other amino-acid positions within the ATP-binding cavity. In particular, BbCDPK4 and PfCDPK1 are sensitive to a larger fraction of compounds than EtCDPK1 despite the presence of a threonine gatekeeper in all three CDPKs.
- PMID:
- 24927073
- [PubMed - as supplied by publisher]
No comments:
Post a Comment