Wednesday, October 03, 2012

Targeted proteomic dissection of Toxoplasma cytoskeleton sub-compartments using MORN1

Cytoskeleton (Hoboken). 2012 Oct 1. doi: 10.1002/cm.21077. [Epub ahead of print]

Targeted proteomic dissection of Toxoplasma cytoskeleton sub-compartments using MORN

Lorestani A, Ivey FD, Thirugnanam S, Busby MA, Marth GT, Cheeseman IM, Gubbels MJ.

Boston College, Department of Biology, Chestnut Hill, MA 02467, USA.

The basal complex in Toxoplasma functions as the contractile ring in the cell division process. Basal complex contraction tapers the daughter cytoskeleton toward the basal end and is required for daughter segregation. We have previously shown that the protein MORN1 is essential for basal complex assembly and likely acts as a scaffolding protein. To further our understanding of the basal complex we combined subcellular fractionation with an affinity purification of the MORN1 complex and identified its protein composition. We identified two new components of the basal complex, one of which uniquely associated with the basal complexin mature parasites, the first of its kind. In addition, we identified several other novel cytoskeleton proteins with different spatiotemporal dynamics throughout cell division. Since many of these proteins are unique to Apicomplexa this study significantly contributes to the annotation of their unique cytoskeleton. Furthermore we show that G-actin binding protein TgCAP is localized at the apical cap region in intracellular parasites, but quickly re-distributes to a cytoplasmic localization pattern upon egress. © 2012 Wiley-Blackwell, Inc.

 PMID: 23027733 [PubMed - as supplied by publisher]

1 comment:

Mark Martin said...

Hello there! You have such an interesting and informative page. I will be looking forward to visit your page again and for your other posts as well. Thank you for sharing your thoughts about proteomics services in your area. I am glad to stop by your site and know more about proteomics services. Keep it up! This is a good read.
Because protein phosphorylation is one of the most-studied protein modifications, many "proteomic" efforts are geared to determining the set of phosphorylated proteins in a particular cell or tissue-type under particular circumstances. This alerts the scientist to the signaling pathways that may be active in that instance.
The PS Biomarker ServicesTM Protein TMT-SRM work flow uses the high selectivity and sensitivity of Selected Reaction Monitoring (SRM) Mass Spectrometry combined with isobaric and isotopic forms of TMT labeling to deliver seamless integration of biomarker discovery and targeted assay development workflows without the need to synthesise expensive AQUA peptides. TMT-SRM methods can be developed for tens to hundreds of candidate biomarkers within a few days of completing discovery studies. After qualification a final biomarker panel can be transferred for absolute quanitative assay development by SRM or immunoassay.

Proteomics Services